
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

http://www.isen.fr/

Introduction to development
of embedded Linux systems

Julien Gaulmin
<julien23@gmail.com> / @julien23

Version 2015r2.
This course is freely distributable under the terms of the

Creative Commons License
(http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en)

Attribution-ShareAlike 2.0

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Summary

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1. Embedded computing:

•Definitions,
•Market and prospect,
• Embedded system topology,
•Hardware architecture,
• Software architecture.

2. Why GNU/Linux?

• Technological reasons,
• Economic reasons,
• Personal reasons,
•Other OS,
• Licenses,
• Limits.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3. Solutions:

• Types of solutions,
• Product oriented platforms,
• Base software components,
• References.

4. Essentials:

•Unix concepts and orthodoxy,
• Linux boot process analysis,
• Compilation process,
• Binary link edition,
• Executables,
• µClinux vs Linux.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Methods and development tools:

• Terminology,
•Development method,
• Cross-compilation,
•Optimisation and debug,
• Software emulation and virtualization.

6. Case study;

7. References.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Embedded computing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Definitions
• Software and hardware combination dedicated to one or

more duty according to more or less severes constraints
(consumption, temperature, size, performances...);

•Autonomous / Self-governing software and hardware
combination missing traditional inputs/outputs (screen,
keyboard, mouse...);

•Hidden computer integrated in a system or equipment not
relative to a computing task;

•More generaly can describe all the electronic systems which
are not members of the traditional computing areas (desktop,
web, business, big data);

•We also talk about "buried" or deeply embedded systems
when the link with computing is not clear anymore.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Exemples
• Smartphone, tablet, diskless-PC, video game console;

• TV box, NVR, camera, car computer;

• Industrial machine, robot;

• Router, Inernet box, µCsimm, Raspberry Pi;

•Washing machine, ABS.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Real-time and embedded computing
• Real-time system:

– data after capture and processing is still relevant,
– ability to respond to a request/stimulus and to produce an

appropriate response in a given time⇒ determinism,
– not necessarily synonymous with computing power or

speed of execution.

• Some embedded systems are subject to more or less strong
temporal constraints requiring the use of real-time kernels
(RTOS1);

1RTOS: Real Time Operating System

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Two main forms of real-time applications:

– hard real-time⇒ the system must respond to a given
event in a given time (ABS, military system...),

– soft real-time⇒ the system is subject to temporal
constraints but the delay or cancellation of a deadline is
not a big deal (video game, VoIP1...).

1VoIP: Voice over IP

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Market and prospect

The embedded rise
• Coupled with the rise of the "all-digital" and multimedia;

• Convergence of media (voice, video, data ...)

• Intelligence at all levels (automation, robotics...)

• Connected products, mobility;

•Miniaturization and lower component costs;

• The next growing factors : IoT1, wearables, etc;

• Evolution of the total embedded market from $32M in 1998
to $92M in 2008 and $2000M in 20152.

1IoT: Internet of Things
2Estimation from IDC in 2011

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Customs and habits
7 Closed market of proprietary OS:

– not cross-compatible,
– expensive and frozen development kits,
– high royalties,
– dependence of an editor.

7 "Home made" OS:

– long development and expensive maintainability,
– bad scalability and sustainability,
– reduced portability.

3 Since 2000, Linux and free software have emerged as an
alternative to these monopolies, from prototyping to finished
product.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The players
•Developers communities;

• Software publishers;

• Service companies;

•Manufacturers components;

• Industrials;

• Scientists, academics and students;

•Organizations (CELF1, Linux Foundation, TV Linux
Alliance, RTLF2, LDPS3, FHSG4, LSB5, FSF6,
OpenGroup...)

•Medias (web portals, editors, press...).
1CELF: CE Linux Forum
2RTLF: Real-Time Linux Foundation
3LDPS: Linux Development Platform Specification
4FHSG: Filesystem Hierarchy Standard Group
5LSB: Linux Standard Base
6FSF: Free Software Foundation

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Embedded system topology

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Hardware architecture
•Often dedicated in systems with severe consumption, size or

cost constraints;

• Today, the trend was reversed with the emergence of
increasingly integrated system off-the-shelves (SOB1,
SOC2...);

• Suited to the needs⇒ no superfluous (scale savings).
1SOB: System On Board
2SOC: System On Chip

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

CPU families
•General purpose: x86, ia64, x64, PowerPC, Sparc...

• Low power: ARM1 (ARMx, Cortex, XScale), SuperH,
MIPS2, PowerPC...

• SOC: 68k (Motorola DragonBall et ColdFire), x86 (AMD
Geode, VIA Nano, Intel Atom), ARM (NVidia Tegra,
Qualcomm Snapdragon, Samsung Hummingbird, Apple Ax,
Intel PXA), MIPS, PowerPC, Etrax...

•ASIC or FPGA with ARM, MIPS or PowerPC core(s)...
1ARM: Advanced RISC Machine
2MIPS: Microprocessor without Interlocked Pipeline Stages

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

�������������������������������

64	 Copyright	 ©	 2012	 by	 UBM	 Electronics.	 	 All	 rights	 reserved.	

3 8 %

2 4 %

2 1%

2 1%

2 0 %

17%

16 %

15%

15%

14 %

14 %

11%

11%

9 %

9 %

9 %

9 %

8 %

8 %

7%

7%

7%

7%

6 %

4 7%

2 0 %

10 %

18 %

2 4 %

17%

15%

19 %

16 %

7%

13 %

11%

12 %

13 %

8 %

9 %

6 %

8 %

8 %

6 %

ARM Cortex/ARM9/ARM11

STMicroelectronics	 STM32	 (ARM)

TI	 Stellaris	 (ARM)

Microchip	 PIC	 32-‐bit	 (MIPS)

TI	 OMAP	 (ARM)

Atmel	 AT91xx	 (ARM)

Atmel	 (AVR32)

Intel	 Atom,	 Pentium,	 Celeron,	 Core	 IX

NXP	 ARM

Freescale	 DragonBall	 i.MX	 (ARM)

Freescale	 Kinetis	 (Cortex-‐M4)

TI	 Sitara	 (ARM)

Xilinx	 MicroBlaze	 (soft-‐core)

Altera	 Nios	 II	 	 (soft	 core)

Arduino

Altera	 SoC-‐FPGA	 (ARM)

Freescale	 68K,	 ColdFire

TI	 C2000	 MCUs

Freescale	 PowerPC	 55xx

Freescale	 PowerPC	 7xx,	 8xx

Renesas	 SuperH,	 H8SX,	 M32C,	 M32R

Freescale	 PowerQUICC

Cypress	 PSOC	 5	 (ARM)

AMD	 Fusion,	 Athlon,	 Opteron,	 Geode

2012	 (N	 =	 1,548)

2011	 (N	 =	 1,679)

Which	 of	 the	 following	 32-‐bit	 chip	 families	 would	 you	 consider	 for	
your	 next	 embedded	 project?	

6%

6%

6%

6%

6%

5%

5%

4%

4%

3%

3%

3%

3%

3%

3%

2%

2%

2%

2%

1%

1%

%

6%

8%

8%

4%

6%

5%

4%

2%

2%

3%

3%

2%

2%

2%

3%

1%

1%

%

5%

Freescale	 PowerPC	 5xx,	 6xx

Xilinx	 Virtex-‐5	 (with	 PowerPC	 405)

TI	 Hercules	 (ARM)

Actel/Microsemi	 ProASIC	 3	 (ARM)

Xilinx	 Zynq

Marvell

NVIDIA	 Tegra

Xilinx	 Virtex-‐4	 (with	 PowerPC	 405)

Broadcom	 (any)

IBM	 PowerPC	 4xx,	 7xx

NEC	 V850

Qualcomm	 (any)

STMicroelectronics	 ST20

Intel	 Itanium

Energy	 Micro	 EFM32

Cirrus	 Logic	 EP73xx,	 EP93xx	 (ARM)

Infineon	 Tricore

AMD	 Alchemy	 (MIPS)

AMCC	 PowerPC	 4xx

SPARC	 (any)

Fujitsu	 FR	 series

IDT	 32xxx

Other

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Communication bus
•VME1⇒ VMEbus, VME64, VME64x, VME320, VXI2,

IP-Module, M-Module...

• PCI3⇒ CompactPCI (cPCI), PCI-X, PXI4, PMC5,
PC/104+, PCI-104, MiniPCI...

• PCIe6⇒ XMC, AdvancedTCA, AMC, ExpressCard,
MiniCard, PCI/104-Express, PCIe/104...

• PCMCIA7⇒ PCMCIA, PC Card, CardBus...

• ISA8⇒ PC/104...
1VME: Versa Module Eurocard
2VXI: VMEbus eXtension for Instrumentation
3PCI: Peripheral Component Interconnect
4PXI: PCI eXtension for Instrumentation
5PMC: PCI Mezzanine Card
6PCIe: PCI eXPRESS
7PCMCIA: Personnal Computer Memory Card International Association
8ISA: Industry Standard Architecture

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Parallel⇒ ATA/ATAPI1 (IDE2), SCSI3,
Centronics/IEEE1284...

• Série⇒ I2C4, RS232, RS485, USB5, IEEE1394, Serial
ATA...

•Network⇒ Ethernet, FDDI6, X.25, WiFi/802.11,
BlueTooth/ZigBee/WUSB/Wibree/802.15.x/ANT, IrDA7,
ATM8, Token Ring, GSM9/GPRS10/UMTS11/LTE12...

1ATAPI: AT Attachment Packet Interface
2IDE: Intergated Drive Electronics
3SCSI: Small Computer Systems Interface
4I2C: Inter-Integrated Circuit
5USB: Universal Serial Bus
6FDDI: Fibber Distributed Data Interface
7IrDA: Infrared Data Association
8ATM: Asynchronous Transfert Mode
9GSM: Global System for Mobile communications

10GPRS: General Packet Radio Service
11UMTS: Universal Mobile Telecommunications System
12LTE: Long Term Evolution

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Mass storage
•Magnetic storage⇒ 2,5", 3,5", microdrive, tape...

• Flash memory⇒ SSD1, FlashDisk, DiskOnChip,
CompactFlash, CFI2, SD Card, Memory Stick, USB Mass
Storage...

• ROM3, EPROM, EEPROM, UVPROM...

•Optical storage⇒ CD, DVD, Blu-ray...

• Combination of the above.
1SSD: Solid State Device
2CFI: Common Flash Interface
3ROM: Read Only Memory

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

I/O
• Inputs:

– AON1 (open collectors, optocouplers...) or GPIO2,
– sensors/transducers (pressure, sound, temperature...),
– keyboards, buttons, touch screens, remote controls

(infrared, radio...)
– optical sensors (photo/video), radio readers (tags), laser

readers (barcodes).

•Outputs:

– AON (relay, optocouplers, logic...) or GPIO,
– LEDs, screens and displays,
– beeps, speech, alarms,
– all kind of printers (paper, labels, photos...).

1AON: All Or Nothing
2GPIO: General Purpose Input Output

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Network
• Technologies:

– classical⇒ Ethernet, ATM, X.25...
– fieldbus⇒ CAN1, RS232, RS485, PLC2, ARCnet3,
– wireless⇒WiFi/802.11, IrDA,

BlueTooth/ZigBee/WUSB/Wibree/802.15.x,
GSM/GPRS/UMTS...

•Why?

– communicate,
– share informations or status,
– monitor and control.

1CAN: Controller Area Network
2PLC: Power Line Communication
3ARCnet: Attached Ressource Computer network

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Software architecture

Reminder about operating systems
(OS)

• Composed of a kernel and some drivers that make the
hardware abstraction;

•Of libraries which formalize the API1 to access the kernel
services;

•And a variable set of basic tools (hardware setup, file
management, GUI, etc).

1API: Application Programming Interface

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The kernel
• First program executed after startup;

• Typically uses a privileged mode of execution of the CPU;

• Performs a hardware and services abstraction :

– provides a suite of general services that facilitate the
creation of application software,

– serves as an intermediary between software and hardware,
– brings convenience, efficiency and scalability,
– for introducing new features and new equipment without

affecting existing software.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• The features offered differ from one model to another and
are typically related to:

– running and scheduling softwares,
– managing main memory and peripherals,
– handling and organization of files (filesystems),
– communication and network, and
– error detection.

Source: Wikipedia (http://http://en.wikipedia.org/wiki/Operating_system)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Structure of a monolithic OS

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Structure of the user space

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Why GNU/Linux?

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Technological reasons
3 Source code availability⇒ full control of the system;

3 Open standards (formats, protocols...)⇒ interoperability;

3 Performances, reliability;

3 Portability⇒ variety of supported architectures and
hardware;

3 Native network connectivity;

3 Scalability⇒ low memory footprint;

3 Diversity and multiplicity of available software.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Economic reasons
3 Free of charge, no royalty;

3 Quick and easy implementation;

3 Independence against suppliers/providers;

3 Developer community⇒ free and unlimited support,
opportunity to speak directly to designers;

3 Multiplicity of players⇒ inertia or evolutions of a product
are not dictated by a single entity.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Personal reasons
3 Free software and its 4 essential freedoms:

– run⇒ no restriction,
– study⇒ "use the source Luke",
– redistribute⇒ sell or give the software and its source

code,
– modify⇒ debug, correct or add functionalities.

3 Take part in one of the biggest community project;
3 Meet and face the best developers,

3 Expand his resume and adapt to market demands.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

�������������������������������

40	 Copyright	 ©	 2012	 by	 UBM	 Electronics.	 	 All	 rights	 reserved.	

In	 2012,	 what	 are	 the	 most	 important	 factors	 in	 choosing	 an	 operaUng	 system.	

4 1%

31%

31%

30%

28%

27%

22%

21%

17%

17%

16%

15%

14%

11%

10%

10%

7%

6%

6%

3%

Availability	 of	 full	 source	 code
Real-‐time	 performance

	 	 No	 royalties
	 	 Availability	 of	 tech	 support

	 	 Freedom	 to	 customize	 or	 modify
	 	 Compatibility	 w/	 other	 software,	 systems

	 	 Open-‐source	 availability
	 	 My	 familiarity	 with	 the	 operating	 system

	 	 The	 processors	 it	 supports
	 	 Purchase	 price

	 	 Simplicity	 /	 ease	 of	 use
Software-‐development	 tools	 available

	 	 Small	 memory	 footprint
	 	 Commercial	 support

Successful	 prior	 use	 for	 similar	 applications
	 	 Middleware,	 drivers,	 existing	 code	 available

	 	 Rich	 selection	 of	 services	 and	 features
	 	 Popularity

	 	 The	 other	 hardware	 it	 supports
	 	 The	 supplier’s	 reputation

2012	 (N	 =	 1628)

Base:	 Currently	 using	
an	 operating	 system

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Other OS

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

�������������������������������

41	 Copyright	 ©	 2012	 by	 UBM	 Electronics.	 	 All	 rights	 reserved.	

What	 operaUng	 system	 or	 real	 Ume	 operaUng	 system	 (RTOS)	 was	 used	 in	 your	
last	 project?	 (Please	 type	 in	 your	 answer	 -‐-‐	 unaided)	

13%

13%

6%

4%

3%

2%

2%

2%

2%

2%

1%

1%

1%

1%

1%

1%

In	 house

Linux

Wind	 River	 VxWorks

Free	 RTOS

Micrium	 uCOS	 II

Custom

Android

Freescale MQX

QNX

Windows

Green	 Hills	 Integrity

Keil	 RTX

Texas	 Instruments	 DSPBIOS

Express	 Logic	 ThreadX

Windows	 CE

Embedded	 Linux

2012	 (N	 =	 1256)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Licenses
•GNU GPL1⇒ the most widespread, the strictest, most

proven and most contagious, it is based on the notion of
copyleft2;

•GNU LGPL3⇒ allows dynamic link edition with
non-free/proprietary code, widely used for libraries;

•X11/MIT/BSD⇒ very permissive, make it possible to
exploit the code as proprietary;

• *PL⇒ many publishers have created their own licenses to
distribute their open source software (Netscape, IBM,
Sun...), the FSF provides a compatibility review of these
licenses with GNU’s (http://www.gnu.org/licenses/license-list.html) and OSI4

certify their compliance with OSD5 (http://www.opensource.org/).
1GPL: General Public License
2copyleft: use of copyright for freedom protection of the software (run, study, redistribute and improve)
3LGPL: Lesser General Public License
4OSI: Open Source Initiative
5OSD: Open Source Definition

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Limits
7 Not suitable for systems of some tens of kilobytes ("dumb"

appliance, sensor, HiFi, remote control...);

7 Source code provided AS-IS;

7 No contractual relationship with a supplier/provider;

7 No automatic assistantship (RTFM1);

7 Reluctance of developers to deal with changes (inertia
principle versus novelty and freedom of choice);

7 Variety of players.
1RTFM: Read The F***ing Manual

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

�������������������������������

46	 Copyright	 ©	 2012	 by	 UBM	 Electronics.	 	 All	 rights	 reserved.	

	 Why	 are	 you	 not	 interested	 in	 embedded	 Linux?	 	 	

39%

25%

23%

17%

14%

14%

9%

27%

41%

26%

21%

20%

14%

14%

5%

26%

41%

20%

18%

20%

11%

14%

7%

28%

38%

21%

20%

19%

14%

12%

8%

29%

Incompatible	 w/	 existing	 software,	 apps,	 drivers

Memory	 usage

Performance	 or	 real-‐time	 capability

Support

Legal	 ambiguity

Development	 tools

Cost	 (after	 deployment)

Other*

2012	 (N	 =	 682)
2011	 (N	 =	 802)
2010	 (N	 =	 639)
2009	 (N	 =	 747)

*Other	 responses	 2012:
	 	 	 -‐	 No	 need	 =	 12%
	 	 	 -‐	 Requirements	 of	 app,	 too
	 	 	 	 	 	 big/complex	 =	 4%	 	 	 	
	 	 	 -‐	 Unfamiliarity	 =	 4%

Base	 =	 Those	 who	 are	 not	
considering	 using	 Linux	

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Solutions

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Types of solutions
Three main approaches are available to Linux embedded
developers:

• "Home made" system:

– building/portage of a host cross-platform development
environment,

– choice and inclusion in the toolchain of software building
blocks for the system (+ dedicated applications),

– build and feed target rootfs (filesystem image),
– automation of previous procedures (scripts, makefiles...)

allowing the rapid reconstruction of a binary image
containing the kernel and rootfs after modifications.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Free distribution (libre):
– ensure that your hardware is supported (architecture,

development board...),
– otherwise adapt the distribution,
– choose from available softwares those that will appear on

the final system.

•Commercial distribution:

– ensure that your hardware is supported (architecture,
development board...),

– purchase one or more licenses of the proprietary developer
tools,

– choose from available softwares those that will appear on
the final system.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Of course, the three approaches have their advantages and
disadvantages depending the profile of the involved developers:

• "Home made" system:

7 longer to set up,
7⇒3requires deeper knowledge of tools and mechanisms

involved, which can be annoying at first but very useful
later,

7 no integrated IDE1,
3 complete control over the system and its components,
3 total independence.

1IDE: Inegrated Development Environment

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Free distribution (libre):
3 quick start,
3 significant number of users and contributors,
7 full control possible, but less obvious,
7 IDE is not always available,
3 total independence.

•Commercial distribution:

3 quick start,
3 full-featured IDE,
3 dedicated help (fees often apply),
7 cost of the development toolchain,
7 less control,
7 near reliance on provider and its toolchain.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

 * Enquête 2005 par LinuxDevices.com

Ly
n

u
x
W

o
rk

s

T
im

e
S
y
s

S
y
sg

o

M
e
tr

o
w

e
rk

s

W
in

d
 R

iv
e
r

A
u
tr

e
s

D
e
n
x

Li
n
u
x
P
P
C

M
a
n

d
ra

k
e

A
u
cu

n
e

N
o
v
e
ll/

S
u
S

E

K
o
a
n

R
T
A

I

R
e
d
 H

a
t

M
o
n
ta

V
is

ta

Fe
d
o
ra

FS
M

La
b
s

O
p
e
n
E
m

b
e
d
d

e
d

D
e
b
ia

n

Fa
it

e
 m

a
is

o
n

 0%

2%

4%

6%

8%

10%

12%

14%

Fournisseurs/Distributions Linux préférés dans l'embarqué*

2 années passées

2 années à venir

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Product oriented platforms
•Middleware geared toward a market segment (eg,

smartphones, tablets, routers, IVI1...);

• SDK2 with high level language:

– facilitate and accelerate developments,
– federate developers.

• Simplifying access to field resources;

• Free, open source or commercial;

• Related or not to a hardware platform.
1IVI: In-Vehicle Infotainment
2SDK: Software Development Kit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Base software components

Linux kernel
• Linux vanilla (http://www.kernel.org/)⇒ the regular Linux kernel;

• µClinux (http://www.uclinux.org/)⇒ kernel patch to support
MMU1-less architectures and some specific hardware
relative to it (integrated in regular kernel from 2.6).

1MMU: Memory Management Unit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Real-time extensions
•Open RTLinux/Wind River Real-Time Core

(http://fr.wikipedia.org/wiki/RTLinux)⇒ pioneered the patented,
microkernel-based, technique of hard real-time on Linux,
but the free version is much less advanced than the
commercial version;

•RTAI1/Linux (http://www.rtai.org/)⇒ POSIX2 API and free
real-time microkernel allowing the coexistence of hard
real-time tasks with Linux kernel as a lower priority task
(now based on patent-free approach ADEOS);

•Xenomai (http://www.xenomai.org)⇒ free successor of RTAI whose
programming API is based on the concept of skins to allow
maximum reuse of existing code (POSIX, proprietary OS,
etc), and scheduling based on a microkernel approach
(Nucleus) or PREEMPT_RT;

1RTAI: Real Time Application Interface
2POSIX: Portable Operating System Interface

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Interruptions matérielles

Linux
Noyau

Modules
Linux

Handlers d’IT Linux

application

Espace utilisateur Processus LinuxProcessus Linux
(récupération de données) (IHM)

temps réel 3

Matériel − contrôleur d’interruptions

Interruptions logicielles

FIFO temps réel

temps réel 1
Tâche

temps réel 2
Tâche

Tâche

Noyau temps réel : RTLinux/RTAI

Source: Nicolas Ferre (http://noglitch.free.fr/)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Source: Xenomai.org

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• low latency, O(1) scheduler, preemtible kernel...⇒ kernel
patches for improved system calls latency, better scheduler
responsiveness or kernel preemption, these are often
developed and sponsored by commercial distributions
(RedHat, MontaVista, TimeSys...);

• PREEMPT_RT⇒ patch to bring native preemption and
support of hard real-time constraints to the Linux kernel
(maintained by the community of embedded developers).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Filesystem for embedded systems
•YAFFS2 (http://www.yaffs.net/)⇒ robust filesystem (journaling,

error correction) for NAND flash1;

• JFFS2 (http://sources.redhat.com/jffs2/)⇒ compressed filesystem for
flash memory, crash and powerfail resistant, taking into
account the specificities of memory storage media via the
Linux MTD2 layer (see also UBIFS);

•ROMFS (http://romfs.sf.net/)/CRAMFS3 (http://sf.net/projects/cramfs/) /
SquashFS (http://squashfs.sourceforge.net/)⇒ read-only filesystems
providing static storage (built on the development system
and stored on ROM, flash or RAM) with minimal features
and size (no permission, no modification date, compression
for CRAMFS et SquashFS...);

1NAND/NOR flash: page and bloc access (∼ hard drive) / random access (∼ RAM)
2MTD: Memory Technology Devices
3CRAMFS: Compressed ROM FileSystem

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• LogFS (http://logfs.org)⇒ log-structured filesystem, efficient even
on large Flash storage (see also NILFS);

•AuFS (http://aufs.sourceforge.net/) / OverlayFS⇒ overlay filesystem
and service that combine two or more filesystems in the
same tree (usually a RW over a RO filesystem);

• TMPFS/RAMFS⇒ RAM filesystems with swap (TMPFS
only, requires a MMU) and dynamically resizable, these are
often used to store non persistent datas (/tmp, /var, logs...);

• PRAMFS1 (http://pramfs.sourceforge.net/)⇒ filesystem for non volatile
RAM (battery powered), persistant over reboot.

1PRAMFS: Protected and Persistent RAM FileSystem

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Source: Karim Yaghmour - Building Embedded Linux Systems (http://www.embeddedtux.org/)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conventional filesystems
• Ext2 (http://e2fsprogs.sf.net/ext2.html)⇒ was the default Linux

filesystem, can be mounted with synchronous writes
(mount -o sync) to ensure data integrity at the expense
of performance;

• Journaled (Ext3/4, ReiserFS, XFS, JFS...)⇒ keeps track
of the changes in a journal (transactions) before committing
them to the main filesystem, quicker to bring back online
and less likely to become corrupted in case of power failure;

• Copy-on-write (BtrFS, ZFS)⇒ modern filesystems with
pooling, snapshots, checksums, integral multi-device
spanning...

•MS-DOS FAT 12/16/32⇒ was the default filesystem of the
Microsoft OS, different versions accomodate to size of
storage (still widely used in CE1).

1CE: Consumer Electronics

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

C library (libc)
•Glibc (http://www.gnu.org/software/libc/libc.html) / EGlibc (http://www.eglibc.org)⇒

official C library on Linux systems, full-featured, powerful,
multi-platform and very well documented but still bulky and
not very suitable in small footprint systems (⇒ EGlibc);

• µClibc (http://www.uclibc.org/)⇒ almost fully compatible (source
code) with the Glibc, it is much more suitable for embedded
systems because designed to be as small as possible, it also
supports kernel µClinux (systems without MMU);

• diet libc (http://www.dietlibc.org/)⇒ lightweight C library for creating
statically linked binaries (not compatible with Glibc);

•Newlib (http://www.sourceware.org/newlib/)⇒ association of several
embedded libraries that can be used without any OS (BSP1).

1BSP: Board Support Package

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Basic tools
• BusyBox (http://www.busybox.net/)⇒ Swiss army knife for embedded

Linux, it reimplements over 200 major utilities available on
Linux systems in one lightweight executable (shells,
console-tools, procps, util-linux, modutils, NetUtils ...);

• TinyLogin (http://tinylogin.busybox.net/)⇒ perfect complement to
BusyBox (today integrated) for embedded systems using
authentication (access control and management of users,
groups, passwords, rights...);

• EmbUtils (http://www.fefe.de/embutils/)⇒ set of common Unix tools
optimized for size and based on diet libc;

•Outils GNU (http://www.gnu.org/directory/GNU/)⇒ standard tools from
the GNU project.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Network servers
•Web:

– Boa (http://www.boa.org/),
– BusyBox::httpd (http://www.busybox.net/),
– LightTPD (http://www.lighttpd.net/),
– thttpd (http://www.acme.com/software/thttpd/),
– Mbedthis AppWeb (http://www.mbedthis.com/),
– GoAhead WebServer (http://www.goahead.com/products/web_server.htm),
– Apache (http://www.apache.org/)...

• FTP:

– sftpd (http://safetp.cs.berkeley.edu/),
– ProFtpd (http://proftpd.linux.co.uk/),
– tftpd...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Remote access:

– OpenSSH (http://www.openssh.com/),
– telnetd,
– utelnetd,
– gettyd,
– pppd...

•DHCP:

– BusyBox::udhcp (http://www.busybox.net/),
– dhcpd...

•Autres:

– Zebra (http://www.zebra.org/),
– snmpd...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Databases
• Berkeley DB (http://www.sleepycat.com/)⇒ open source, GPL

compliant, commercial, non-relational, simple, less than
500 kB, multi-platform;

•MySQL (http://www.mysql.com/)⇒ open source (GPL or
commercial), relational, SQL, transactional, fast,
multi-platform, widespread;

• SQLite (http://www.sqlite.org/)⇒ open source, relational, SQL,
transactional, server-less (standalone library),
multi-platform, single file, widespread in embedded
systems, less than 275 kB;

•DB2 Everyplace (http://www.ibm.com/software/data/db2/everyplace/)
⇒ commercial, less than 200 kB, multi-platform.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

GUI1

• Regular graphical tools and libraries used on desktop
computers are not suitable for embedded systems due to
their size on storage and memory.

 * Source LinuxDevices.com

Mozilla

KDE

Gnome

Xfree86

0 20 40 60 80 100 120

5

14

11

12

16

95

96

26

Inadaptabilité des applications graphiques
"classiques" pour l'embarqué*

Disque (Mo)

RAM (Mo)

1GUI: Graphical User Interface

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•DirectFB (http://www.directfb.org/)⇒ overlay of the Linux
framebuffer for building fast and light GUI with full
hardware abstraction;

•Gtk+ (http://www.gtk.org/)⇒ a version of that library (very
common in the Unix world) uses DirectFB to avoid the use
of a X Window server;

•Qt/Embedded (http://www.trolltech.com/products/embedded/)⇒ layer
allowing the use of the Qt library above the Linux
framebuffer (from 800 kB à 3 MB);

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•MicroWindows/Nano-X (http://www.microwindows.org/)
⇒ multi-platform graphical environment with its own API,
but also a library compatible with X Window (100 kB);

•X Window System (XFree86/X.org)⇒ (http://www.xfree86.org/ /
http://www.x.org/) open source implementations of the historical
graphical server of all Unix systems, are fast and optimized
for many chipsets but memory and disk space intensive;

• Tiny-X (http://www.xfree86.org/)⇒ implementation of a X Window
server for embedded systems (1 MB);

• SDL1 (http://www.libsdl.org/)⇒ multi-platform library for the
development of multimedia graphical applications.

1SDL: Simple DirectMedia Layer

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

IDE1

• Eclipse (http://www.eclipse.org/);

•KDevelop (http://www.kdevelop.org/);

•Vim (http://www.vim.org/);

• Emacs (http://www.emacs.org/).

1IDE: Intergated Development Environment

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

References

Free distributions
• µClinux-dist (http://www.uclinux.org/pub/uClinux/dist/);

• SnapGear Embedded Linux (http://www.snapgear.org/);

•Yocto Project / OpenEmbedded;

• Pengutronix PTXdist (http://www.pengutronix.de/software/ptxdist_en.html);

•Denx ELDK1 (http://www.denx.de/ELDK/).

1ELDK: Embedded Linux Development Kit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Commercial distributions
• FSMLabs (http://www.rtlinux.com/);

•VirtualLogix (http://www.virtuallogix.com/);

•Koan (http://www.klinux.org/);

• LynuxWorks (http://www.lynuxworks.com/);

• Intel/Windriver (http://www.windriver.com/);

•MontaVista (http://www.mvista.com/);

• SysGo (http://www.elinos.com/);

• TimeSys (http://www.timesys.com/).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Product oriented platforms
•Android (http://developer.android.com/);

• Tizen (http://developer.tizen.org/);

• Bada (http://developer.bada.com/);

•WebOS (http://developer.palm.com/);

• Zeroshell (http://www.zeroshell.net/).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Essentials

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Unix concepts and orthodoxy
"UNIX is basically a simple operating system, but you have to
be a genius to understand the simplicity." - Dennis Ritchie

• Everything is file (datas, drivers, links, pipes, sockets);

•Modularity and pipes "|":

– simple programs that do one thing and do it well,
– programs that work together and combine to make

complex things,
– focus on text stream as a universal interface,
– eg, du -ks * | sort -n .

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Linux boot process analysis
• Firmware (bootstrap)⇒ placed in a ROM/Flash to the first

address accessed by the processor after a reset, it initializes
the CPU and passes control to the bootloader;

• Bootloader⇒ responsible for launching the kernel by
running it in place (XIP1) or placing it in RAM after
downloading from:

– a predetermined address on a storage medium (ROM,
Flash, hard drive, CDROM...),

– a filesystem it knows how to access,
– the network (BOOTP/TFTP2).

1XIP: eXecute In Place
2TFTP: Trivial File Transfert Protocol

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• kernel⇒ after an initialization stage of all its components,
it mounts the root filesystem (rootfs) available on:

– a storage medium, or
– RAM, preloaded by the bootloader, or
– the network (NFS1).

before the startup of the first process (init);

• The init process launches applications and other system
services...

1NFS: Network FileSystem

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Compilation process
gcc -v helloworld.c -o helloworld

• Preprocessor (CPP1)⇒ handles macro commands from C
files (#include, #define, #ifdef,
__FUNCTION__...);

•Compiler (CC2)⇒ transforms the C source files in
assembly source files dedicated to a platform;

•Assembler (AS3)⇒ transforms assembly source files in
binary objets (BFD4 library);

• Linker (LD5)⇒ produces an executable from the binary
objects and static libraries (archives).

1CPP: C PreProcessor
2CC: C Compiler
3AS: ASsembler
4BFD: Binary File Descriptor
5LD: Link eDitor

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Binary link edition

Static links
gcc -Wall -O2 -o libmisc.o -c libmisc.c
ar -rc libmisc.a libmisc.o
gcc -Wall -O2 -o app.o -c app.c
gcc -L. -static -o app_static app.o -lmisc

•All dependencies are resolved during link edition;

• The resulting executable is much larger because it contains
portions of the code from libraries it uses;

• It will run whatever versions of shared libraries are present
on the target (it does not use it).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Dynamic links
gcc -Wall -O2 -fpic -o libmisc.po -c
libmisc.c
gcc -shared -o libmisc.so libmisc.po
gcc -Wall -O2 -o app.o -c app.c
gcc -L. -o app_dynamic app.o -lmisc

•Default type of link edition on platforms that support this
mechanism;

• The final link editing is achieved when loading the
executable;

• If N executable use the same version of a shared library, it is
loaded only once in memory;

• The executable is smaller containing only its own code.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Process of loading an executable
dynamically linked

•When the process is created, the kernel loads the executable
and the dynamic loader (ld-linux.so for ELF binaries)
into memory using mmap() system call;

• Control is given to the dynamic loader;

• The charger inspects the executable and libraries available
on the system (via ld.so.cache and ld.so.conf) to
resolve dependencies (data and functions) and find the
necessary libraries;

• It then loads into memory all the necessary libraries to
predefined addresses in the virtual memory space of the
process;

• The charger finally jumps to the start point of the program
and this one can then start.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Tools related to shared libraries
• ldd⇒ display the shared library dependencies of a

dynamically linked executable or another shared library;

• ldconfig⇒ create the symbolic links and cache file
ld.so.cache used by the dynamic loader according to
/lib, /usr/lib and other directories listed in
ld.so.conf;

• ltrace⇒ catch and print the calls to shared libraries for
one process.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Static vs dynamic
• Static if:

– dynamic is not supported (often the case with MMU-less
platforms),

– few executables share the same libraries,
– only few functions of each library are used.

•Dynamic if:

– memory resources available are very limited,
– many applications on the target,
– need to upgrade or correct the libraries without updating

the entire target.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Executables

Common formats
• ELF1⇒ binary format for executables, objects and libraries,

it is the standard for most Unixes (including Linux);

• a.out2⇒ the default output format of the assembler and the
link editor of the Unix systems;

• bFLT3 (Flat)⇒ lightweight file format for executables,
derived from a.out format used by the project µClinux,
supports compression;

• COFF4⇒ binary format from the Unix System V ABI5, it is
the ancestor of ELF.

1ELF: Executable and Linkable Format
2a.out: assembler output
3bFLT: binary FLaT format
4COFF: Common Object File Format
5ABI: Application Binary Interface

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Operations on executables
• lightening⇒ utility strip removes symbols, debug

informations and other unnecessary contents from a binary
file (executable or library);

• conversion⇒ utility elf2flt converts an ELF binary to
bFLT;

• compression⇒ bFLT format supports compression (full or
only datas) with runtime decompression by the kernel
(elf2flt [-z|-d]).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

µClinux vs Linux

Main differences
• µClinux is tailored to platforms without MMU

– no memory protection,
– no virtual memory (flat memory model).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Consequences
• fork() system call is not implemented⇒ use of
vfork() (API BSD):

– father and son share the same memory space (including
stack), and

– the father is suspended until his son calls execve() or
exit().

• Fast fragmentation if many dynamic memory allocations or
releases (malloc()/free())⇒ prefer allocating a pool
at application startup;

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Fixed size stack (at compile time);

•Use of relocatable binaries:

– relative addressing (PIC1)⇒ binary limited to 32 kB
(16 bits jump of 68k), or

– absolute addressing fully relocatable (references modified
at loading time)⇒ heavier and slower to load.

•No swap mecanism.
1PIC: Position Independant Code

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Methods and development tools

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Terminology
•We distinguish two entities:

– the target is the hardware platform (device) that will run
the embedded OS and applications,

– the host is the development platform (desktop) on which
the software for the target is prepared.

•Host and target hardly share the same hardware architecture
and sometimes neither the same OS;

•A single host can be used to develop many different targets
at the same time.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Development method
•Usually, we distinguish 4 development methodologies for

embedded systems:

– online development,
– development through removable storage,
– on target development,
– development with prototype.

• These methodologies are more or less dictated by storage
constraints, performance and accessibility of the target
system.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Online development
• The target is connected to the host by a physical link

(Ethernet, USB, serial, JTAG...);

• The link is used to:

– remotely update the target, a/o
– debug the target, a/o
– let the target download its kernel and rootfs (TFTP,

NFS...).

• It is the most encountered configuration.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Development through removable
storage

• The target has a minimal bootloader;

•Developer puts the kernel and rootfs on the removable
storage (CompactFlash, EEPROM...) using a programer on
the host;

• The media storage is then set up on the target;

• ROM emulator improves the process to make it look like a
online development.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

On target development
•Only possible on embedded systems with sufficient storage

space and memory to run a compiler (eg SOB systems with
hard drive);

• The target has its own native development toolchain (editor,
compiler, debugger ...);

• The developer accesses the target either directly using a
keyboard and a screen, or through the network from the host
(ssh, telnet...);

•Generally based on a Linux distribution, it may possibly be
"lightened" in the transition to the final system (suppression
of design tools, documentation, unnecessary packages...).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Development with prototype
•Development is made on target or on a development

platform (similar to the target) from a Linux distribution on
hard drive;

•Development (in parallel?) of a light rootfs that:

– contains only the directory tree, utilities and libraries
(beware versions) required for applications,

– will be later placed on the target (eg CompactFlash to
overcome a hard drive) after integration of applications.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Cross-compilation

Compilation toolchain
•We talk about a Cross-Platform Development Toolchain;

• It consists of the following:

– a set of binary file manipulation tools (binutils),
– a C/C++ compiler (GCC),
– a kernel (Linux),
– a C library (µClibc).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Interdependencies in the toolchain

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Making of the cross-compilation
toolchain

• The host must already have a local toolchain (see
distributions) enabling it to compile native applications (for
itself);

•GNU target naming:

– ARM⇒ arm-linux

– PowerPC⇒ powerpc-linux

– MIPS (big endian)⇒ mips-linux

– MIPS (little endian)⇒ mipsel-linux

– i386⇒ i386-linux...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Target and pathes setup:

$ export TARGET=arm-linux

$ export PREFIX=/usr/local

$ export INCLUDE=$PREFIX/$TARGET/include

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Binutils configuration:

$ tar zxvf binutils-2.10.1.tar.gz

$ mkdir build-binutils

$ cd build-binutils

$../binutils-2.10.1/configure
-target=$TARGET -prefix=$PREFIX

$ make

$ make install

The $PREFIX/bin directory contains
arm-linux-ar, arm-linux-as, arm-linux-ld,
arm-linux-nm, arm-linux-objdump,
arm-linux-strip...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Installation of the bootstrap cross-compiler:

$ tar zxvf gcc-2.95.3.tar.gz

$ mkdir build-bootstrap-gcc

$ cd build-bootstrap-gcc

$../gcc-2.95.3/configure -target=$TARGET
-prefix=$PREFIX -without-headers
-with-newlib -enable-languages=c

$ make all-gcc

$ make install-gcc

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Linux kernel headers setup:

$ tar jxvf linux-2.4.24.tar.bz2

$ cd linux-2.4.24

$ make ARCH=arm CROSS_COMPILE=$TARGET-
menuconfig

$ mkdir $INCLUDE

$ cp -r linux/ $INCLUDE

$ cp -r asm-generic/ $INCLUDE

$ cp -r asm-arm/ $INCLUDE/asm

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Installation of the C library:

$ tar jxvf uClibc-0.9.16.tar.bz2

$ cd uClibc-0.9.16

$ make CROSS=$TARGET- menuconfig

$ make CROSS=$TARGET-

$ make CROSS=$TARGET- PREFIX="" install

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Full cross-compiler setup:

$ mkdir build-gcc

$ cd build-gcc

$../gcc-2.95.3/configure -target=$TARGET
-prefix=$PREFIX -enable-languages=c,c++

$ make all

$ make install

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

How to use the cross-compilation
toolchain

$ arm-linux-gcc exemple.c -o exemple

$ arm-linux-size exemple

$ arm-linux-strip exemple

...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

ScratchBox/Crosstool-NG/buildroot

• www.scratchbox.org, crosstool-ng.org,
buildroot.uclibc.org;

• Toolkits simplifying the creation of complete
cross-compilation toolchains;

•Various features:

– management of cross-compilation and
cross-configuration,

– sandbox mechanism (QEMU + chroot) to isolate the host
from target,

– kernel and rootfs generation for buildroot.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Yocto Project/OpenEmbedded

• www.yoctoproject.org,
www.openembedded.org;

• Frameworks for creating your own embedded distribution;

• Based on a common framework OpenEmbedded-Core and
the BitBake tool;

•Manage cross-compilation;

• Support several package managers;

• Tests with QEMU;

•Many sub-projects:

– Eclipse integration,
– creation of a SDK for your distribution (ADK1),
– EGlibc...

1ADK: Application Development Kit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Optimisation and debug

Remote debugging with GDB1

• Symbolic debugging;

• Target process remotely controlled from host with GDB (or
graphical overlay like DDD2);

• Two options on the target side:

– gdbstub: collection of hooks and handlers available in
the target firmware or kernel allowing to debug it remotely
by manipulating the hardware, or

– gdbserver: small application installed on the target and
allowing to remotely debug an application using OS
services (ptrace() Unix system call).

1GDB: GNU DeBugger
2DDD: Data Display Debugger

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

gdbserver

• It allows to debug applications only but it is simpler and
more common in the Linux world;

• The gdbserver part, available on the target, retrieves
debugging commands from the GDB on host and send the
results back;

• Several communication links are available (serial, TCP/IP...);

• Example of connection via TCP/IP:

target> gdbserver :2222 hello

host> arm-linux-gdb hello or ddd -gdb
-debugger arm-linux-gdb hello

(gdb) target remote 192.168.0.10:2222
(gdb) list
(gdb) break 10
(gdb) cont

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

strace

• Tool to intercept (uses ptrace()) all system calls made by
a process and display it in a human-readable manner;

•Ability to filter intercepted system calls (eg strace -e
trace=open,close,read ls);

• Can be installed on the target during developments and
removed from the final version;

• Located on the border between user space and kernel space,
it helps to figure out which of application or kernel (rare;-)
misbehaves.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

LTTng1 / SystemTap

• Full-featured analysis softwares for system and kernel;

• Includes a core part (traces capture) and a user part (traces
acquisition);

• Traces from the target can be analyzed on the host with
dedicated graphics applications;

•Allows comprehensive analysis of timing issues,
inter-process communication, user/kernel timing...

1LTT: Linux Trace Toolkit next generation

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Profiling
• Technique of making statistics on execution times of

different parts of an application for debugging and/or
optimization;

• The Linux kernel has its own profiling system (boot option
profile=n, /proc/profile and tool
readprofile) that looks at the instruction pointer at each
system timer interrupt and then updates statistics on most
used kernel functions;

• For applications, GCC has also its own profiling system
(-pg option) that makes a statistic-file during application
runtime (exploitable later with the gprof tool).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Hardware debug
• ROM emulator⇒ RAM component (overlay RAM) drived

with a serial link it allows quick code upload on the target
and setting breakpoints on it;

• ICE1⇒ physical CPU emulator that take the place of the
CPU on the board and can simulate up to I/O;

• JTAG2⇒ can be used as a OCD3 that allows to set
breakpoints and to read/write registers on microcontrollers
but often limited to on-chip memory programming;

1ICE: In Circuit Emulator
2JTAG: Joint Test Action Group
3OCD: On Chip Debugger

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Software emulation and virtualization
•QEMU (http://www.bellard.org/qemu/)⇒ multi-platform CPU emulator

(x86, ARM, SPARC, PowerPC) with two running modes
(full system or Linux application);

•ARMulator (http://www.gnu.org/software/gdb/)⇒ GNU debugger (GDB)
extension that can emulate many different ARM cores (big
endian, little endian and thumb);

•Xcopilot (http://www.uclinux.org/pub/uClinux/utilities/)⇒ full PalmPilot
emulator (68k, timers, serial port, touchscreen...), it was
used for engineering the first µClinux version;

• POSE1 (http://sf.net/projects/pose/)⇒ multi-platform Palm PDA
emulator, it is a rework of the Palm Copilot;

1POSE: Palm OS Emulator

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•UML1 (http://user-mode-linux.sf.net/)⇒ Linux kernel running over
another Linux kernel, it allows to run multiple kernels as
standard processes of a host kernel;

•VMware (http://www.vmware.com/) / VirtualBox (http://www.virtualbox.org/)⇒
multi-platform virtual machines (commercial/free) that can
emulate a full x86/PC (CPU, BIOS, drives, network...) and
that can run many of the OS for this arch;

• Bochs (http://bochs.sf.net/)⇒ free multi-platform x86/PC emulator
(LGPL license);

•MAME2 (http://www.mame.net/)⇒ arcade emulator that emulates
many old processors (z80, M6809, 68k...) that are
sometimes still in use in the embedded world.

1UML: User Mode Linux
2MAME: Multiple Arcade Machine Emulator

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Case study

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Raspberry Pi

• Implementation of an embedded system on the Raspberry Pi
SOB (ARM11, SD Flash, 256MB SDRAM and 100 Mb
Ethernet controller):

– setup of the Raspbian distribution,
– cross-compilation,
– remote debugging with gdbserver,
– web server and PHP,
– system from scratch with buildroot.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

µCsimm
• Implementation of an embedded system on the µCsimm

SOB (DragonBall EZ, 2 MB Flash, 8 MB DRAM and
10 Mb Ethernet controller):

– setup of the µClinux distribution,
– cross-compilation,
– remote debugging with gdbserver,
– web server and CGI1.

1CGI: Common, Gateway Interface

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

References

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Books
• Building Embedded Linux Systems - Karim Yaghmour

(http://www.embeddedtux.org/);

• Linux Embarqué - Pierre Ficheux (http://pficheux.free.fr/);

• Embedded Linux - John Lombardo;

• Embedded Linux - Craig Hollabaugh;

• Linux for Embedded and Real-time Applications - Doug
Abbott.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Portals
• LinuxGizmos (http://linuxgizmos.com/);

• Embedded Linux Wiki (http://elinux.org/);

• The Linux Foundation (http://www.linuxfoundation.org/);

• The Linux Documentation Project (http://www.tldp.org/).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Web
• French courses from Patrice Kadionik at ENSEIRB

(http://www.enseirb.fr/ kadionik/);

• Bill Gatliff homepage (http://billgatliff.com/);

•Nicolas Ferre homepage (http://nferre.free.fr/);

• The µClinux directory (http://uclinux.home.at/);

• Embedded Debian (http://www.emdebian.org/);

• Filesystems (http://en.wikipedia.org/wiki/List_of_file_systems).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Hardware
•OpenHardware (http://www.openhardware.net/);

• LART (http://www.lart.tudelft.nl/);

•OpenCores (http://www.opencores.org/);

•GumStix (http://www.gumstix.com/);

•ArmadeouS (http://www.armadeus.com/);

• Raspberry Pi (http://www.raspberrypi.org/).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The end

