

Ressources

Documentation
Raspberry Pi homepage : http://www.raspberrypi.org/
Raspberry Pi (RPi) Embedded Linux Wiki : http://elinux.org/R-Pi_Hub
Wikipedia : http://en.wikipedia.org/wiki/Raspberry_Pi
BCM2835 datasheet : http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
Blog de Christophe Blaess : http://www.blaess.fr/christophe/category/raspberry-pi/

LED ACT
Extrait du fichier leds-class.txt de la documentation du noyau Linux (http://www.kernel.org/doc/Documentation/
leds/leds-class.txt) :

LED handling under Linux
========================

If you're reading this and thinking about keyboard leds, these are
handled by the input subsystem and the led class is *not* needed.

In its simplest form, the LED class just allows control of LEDs from
userspace. LEDs appear in /sys/class/leds/. The maximum brightness of the
LED is defined in max_brightness file. The brightness file will set the brightness

http://www.raspberrypi.org/
http://www.raspberrypi.org/
http://www.raspberrypi.org/
http://www.raspberrypi.org/
http://www.raspberrypi.org/
http://www.raspberrypi.org/
http://www.raspberrypi.org/
http://www.raspberrypi.org/
http://elinux.org/R-Pi_Hub
http://elinux.org/R-Pi_Hub
http://elinux.org/R-Pi_Hub
http://elinux.org/R-Pi_Hub
http://elinux.org/R-Pi_Hub
http://elinux.org/R-Pi_Hub
http://elinux.org/R-Pi_Hub
http://elinux.org/R-Pi_Hub
http://elinux.org/R-Pi_Hub
http://elinux.org/R-Pi_Hub
http://elinux.org/R-Pi_Hub
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.blaess.fr/christophe/category/raspberry-pi/
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt
http://www.kernel.org/doc/Documentation/leds/leds-class.txt

of the LED (taking a value 0-max_brightness). Most LEDs don't have hardware
brightness support so will just be turned on for non-zero brightness settings.

The class also introduces the optional concept of an LED trigger. A trigger
is a kernel based source of led events. Triggers can either be simple or
complex. A simple trigger isn't configurable and is designed to slot into
existing subsystems with minimal additional code. Examples are the ide-disk,
nand-disk and sharpsl-charge triggers. With led triggers disabled, the code
optimises away.

Complex triggers whilst available to all LEDs have LED specific
parameters and work on a per LED basis. The timer trigger is an example.
The timer trigger will periodically change the LED brightness between
LED_OFF and the current brightness setting. The "on" and "off" time can
be specified via /sys/class/leds/<device>/delay_{on,off} in milliseconds.
You can change the brightness value of a LED independently of the timer
trigger. However, if you set the brightness value to LED_OFF it will
also disable the timer trigger.

You can change triggers in a similar manner to the way an IO scheduler
is chosen (via /sys/class/leds/<device>/trigger). Trigger specific
parameters can appear in /sys/class/leds/<device> once a given trigger is
selected.

Design Philosophy
=================

The underlying design philosophy is simplicity. LEDs are simple devices
and the aim is to keep a small amount of code giving as much functionality
as possible. Please keep this in mind when suggesting enhancements.

LED Device Naming
=================

Is currently of the form:

"devicename:colour:function"

There have been calls for LED properties such as colour to be exported as
individual led class attributes. As a solution which doesn't incur as much
overhead, I suggest these become part of the device name. The naming scheme
above leaves scope for further attributes should they be needed. If sections
of the name don't apply, just leave that section blank.

GPIO
Extrait du fichier gpio.txt de la documentation du noyau Linux (http://www.kernel.org/doc/Documentation/
gpio.txt) :

GPIO Interfaces

This provides an overview of GPIO access conventions on Linux.

[..]

What is a GPIO?
===============
A "General Purpose Input/Output" (GPIO) is a flexible software-controlled
digital signal. They are provided from many kinds of chip, and are familiar
to Linux developers working with embedded and custom hardware. Each GPIO
represents a bit connected to a particular pin, or "ball" on Ball Grid Array
(BGA) packages. Board schematics show which external hardware connects to
which GPIOs. Drivers can be written generically, so that board setup code
passes such pin configuration data to drivers.

System-on-Chip (SOC) processors heavily rely on GPIOs. In some cases, every
non-dedicated pin can be configured as a GPIO; and most chips have at least
several dozen of them. Programmable logic devices (like FPGAs) can easily
provide GPIOs; multifunction chips like power managers, and audio codecs
often have a few such pins to help with pin scarcity on SOCs; and there are
also "GPIO Expander" chips that connect using the I2C or SPI serial busses.
Most PC southbridges have a few dozen GPIO-capable pins (with only the BIOS
firmware knowing how they're used).

[..]

Sysfs Interface for Userspace (OPTIONAL)
==
Platforms which use the "gpiolib" implementors framework may choose to
configure a sysfs user interface to GPIOs. This is different from the
debugfs interface, since it provides control over GPIO direction and
value instead of just showing a gpio state summary. Plus, it could be
present on production systems without debugging support.

Given appropriate hardware documentation for the system, userspace could
know for example that GPIO #23 controls the write protect line used to
protect boot loader segments in flash memory. System upgrade procedures
may need to temporarily remove that protection, first importing a GPIO,
then changing its output state, then updating the code before re-enabling
the write protection. In normal use, GPIO #23 would never be touched,
and the kernel would have no need to know about it.

Again depending on appropriate hardware documentation, on some systems
userspace GPIO can be used to determine system configuration data that
standard kernels won't know about. And for some tasks, simple userspace
GPIO drivers could be all that the system really needs.

Note that standard kernel drivers exist for common "LEDs and Buttons"
GPIO tasks: "leds-gpio" and "gpio_keys", respectively. Use those
instead of talking directly to the GPIOs; they integrate with kernel
frameworks better than your userspace code could.

Paths in Sysfs

There are three kinds of entry in /sys/class/gpio:
 - Control interfaces used to get userspace control over GPIOs;
 - GPIOs themselves; and
 - GPIO controllers ("gpio_chip" instances).

http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt
http://www.kernel.org/doc/Documentation/gpio.txt

That's in addition to standard files including the "device" symlink.

The control interfaces are write-only:

 /sys/class/gpio/

 "export" ... Userspace may ask the kernel to export control of
a GPIO to userspace by writing its number to this file.

Example: "echo 19 > export" will create a "gpio19" node
for GPIO #19, if that's not requested by kernel code.

 "unexport" ... Reverses the effect of exporting to userspace.

Example: "echo 19 > unexport" will remove a "gpio19"
node exported using the "export" file.

GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
and have the following read/write attributes:

 /sys/class/gpio/gpioN/

"direction" ... reads as either "in" or "out". This value may
normally be written. Writing as "out" defaults to
initializing the value as low. To ensure glitch free
operation, values "low" and "high" may be written to
configure the GPIO as an output with that initial value.

Note that this attribute *will not exist* if the kernel
doesn't support changing the direction of a GPIO, or
it was exported by kernel code that didn't explicitly
allow userspace to reconfigure this GPIO's direction.

"value" ... reads as either 0 (low) or 1 (high). If the GPIO
is configured as an output, this value may be written;
any nonzero value is treated as high.

If the pin can be configured as interrupt-generating interrupt
and if it has been configured to generate interrupts (see the
description of "edge"), you can poll(2) on that file and
poll(2) will return whenever the interrupt was triggered. If
you use poll(2), set the events POLLPRI and POLLERR. If you
use select(2), set the file descriptor in exceptfds. After
poll(2) returns, either lseek(2) to the beginning of the sysfs
file and read the new value or close the file and re-open it
to read the value.

"edge" ... reads as either "none", "rising", "falling", or
"both". Write these strings to select the signal edge(s)
that will make poll(2) on the "value" file return.

This file exists only if the pin can be configured as an
interrupt generating input pin.

"active_low" ... reads as either 0 (false) or 1 (true). Write
any nonzero value to invert the value attribute both
for reading and writing. Existing and subsequent
poll(2) support configuration via the edge attribute
for "rising" and "falling" edges will follow this
setting.

GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the
controller implementing GPIOs starting at #42) and have the following
read-only attributes:

 /sys/class/gpio/gpiochipN/

 "base" ... same as N, the first GPIO managed by this chip

 "label" ... provided for diagnostics (not always unique)

 "ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)

Board documentation should in most cases cover what GPIOs are used for
what purposes. However, those numbers are not always stable; GPIOs on
a daughtercard might be different depending on the base board being used,
or other cards in the stack. In such cases, you may need to use the
gpiochip nodes (possibly in conjunction with schematics) to determine
the correct GPIO number to use for a given signal.

Pour information, voici les informations debugfs exportées par le noyau lorsqu’un GPIO (17) a été configuré en
sortie via l’interface sysfs :

Implantation des pins GPIO en fonction de la révision de la carte Raspberry Pi (Rev. 1 vs Rev. 2) :

P1: The Main GPIO connector
[source https://projects.drogon.net/raspberry-pi/wiringpi/pins/]

P5: The auxilliary GPIO connector on Rev. 2 boards
[source https://projects.drogon.net/raspberry-pi/wiringpi/pins/]

P1: The Main GPIO connector Rev. 1
[source http://elinux.org/images/2/2a/GPIOs.png]

https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png
http://elinux.org/images/2/2a/GPIOs.png

Cross-Compilation
Récupération de la chaîne de compilation croisée :

git clone https://github.com/raspberrypi/tools.git ./tools

Exemple de Makefile pour la compilation croisée :

CFLAGS=-O2 -pipe -mcpu=arm1176jzf-s -mfpu=vfp -mfloat-abi=hard -w -g
CCPREFIX=../tools/arm-bcm2708/arm-bcm2708hardfp-linux-gnueabi/bin/arm-
bcm2708hardfp-linux-gnueabi-
CC = $(CCPREFIX)gcc
TARGETS = $(patsubst %.c,%,$(wildcard *.c))

all: $(TARGETS)

%: %.c
 $(CC) $(CFLAGS) $< -o $@

clean:
 $(RM) $(TARGETS)

Remote debugging
pi@raspberrypi ~ $ gdbserver :2345 helloworld_pause
Process helloworld_pause created; pid = 9320
Listening on port 2345

julien@buzz:~/TODO/ISEN/RASPBERRY/SRC$ LD_PRELOAD=../libpython2.7.so.1.0 ../
tools/arm-bcm2708/arm-bcm2708hardfp-linux-gnueabi/bin/arm-bcm2708hardfp-

linux-gnueabi-gdb helloworld_pause

GNU gdb (crosstool-NG 1.15.2) 7.3
Copyright (C) 2011 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-build_pc-linux-gnu --target=arm-
bcm2708hardfp-linux-gnueabi".
For bug reporting instructions, please see:
...
Reading symbols from /home/julien/TODO/ISEN/RASPBERRY/SRC/
helloworld_pause...done.
(gdb) list
1 #include
2 #include
3
4 int main(void)
5 {
6 puts("Hello World !");
7
8 pause();
9
10 return 0;
(gdb) target remote 192.168.0.1:2345
Remote debugging using 192.168.0.1:2345
Reading symbols from /home/julien/TODO/ISEN/RASPBERRY/tools/arm-bcm2708/arm-
bcm2708hardfp-linux-gnueabi/arm-bcm2708hardfp-linux-gnueabi/sysroot/lib/ld-
linux.so.3...done.
Loaded symbols for /home/julien/TODO/ISEN/RASPBERRY/tools/arm-bcm2708/arm-
bcm2708hardfp-linux-gnueabi/arm-bcm2708hardfp-linux-gnueabi/sysroot/lib/ld-
linux.so.3
0x40000ef0 in process_dl_audit ()
 from /home/julien/TODO/ISEN/RASPBERRY/tools/arm-bcm2708/arm-
bcm2708hardfp-linux-gnueabi/arm-bcm2708hardfp-linux-gnueabi/sysroot/lib/ld-
linux.so.3
(gdb) break 6
Breakpoint 1 at 0x82f8: file helloworld_pause.c, line 6.
(gdb) run
The "remote" target does not support "run". Try "help target"
or "continue".
(gdb) continue
Continuing.
warning: Could not load shared library symbols for 2 libraries, e.g. /usr/
lib/arm-linux-gnueabihf/libcofi_rpi.so.

Use the "info sharedlibrary" command to see the complete listing.
Do you need "set solib-search-path" or "set sysroot"?

Breakpoint 1, main () at helloworld_pause.c:6
6 puts("Hello World !");
(gdb) backtrace
#0 main () at helloworld_pause.c:6

