Raspberry Pi
Model @ @

€
MICRO USB
POWER 256MB RAN

BROADCOM BCM2835

Ressources

Documentation

Raspberry Pi homepage: http://www.raspberrypi.org/

Raspberry Pi (RPi) Embedded Linux Wiki: http://elinux.org/R-Pi_Hub

Wikipedia: http://en.wikipedia.org/wiki/Raspberry Pi

BCM2835 datasheet:
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
Christophe Blaess (blog): http://www.blaess.fr/christophe/category/raspberry-pi/

m'l\:con. BCM2835 ARM Peripherals
-

FFFFFFFF

Size of Physical memory FFFFFFFF
st In anm_loader
{4000000)

10 Peripherals

V0 Base set in kemel arch
C Allas - direct uncached — e 100000)

Kernel-made Virual
VCSDRAM | Addresses
(optional)
SDRAN
(for tha ARM) UsenKemel spiit
detarmined by kernal
configuration (CO000000)
¥ Alias - L2 cached (only)
1) Base setin
arm_loader (20000000)
User-mode Page-mapped
‘4 Mias - 12 cache dm— Total System SDRAN Virual Address
coherent (non allocatin
[o VC SDRAM
(optional)
40000000 VCIARM spiit determined
by VC platiorm
configuration
| SORAM
0" Alias - L1 and L2 cached (for the ARM)
00000000
ARM Physical
Addresses
00000000 00000000
VC CPU Bus ARM Virtual

Addresses Addresses

http://www.google.com/url?q=http%3A%2F%2Fwww.raspberrypi.org%2F&sa=D&sntz=1&usg=AFQjCNEi_VUOH70tJj0IisqolQomo0OZsA
http://www.google.com/url?q=http%3A%2F%2Felinux.org%2FR-Pi_Hub&sa=D&sntz=1&usg=AFQjCNGHoDk2gYs1umI-KrMSFrXgdAb7dQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRaspberry_Pi&sa=D&sntz=1&usg=AFQjCNEiY6YHZTW2Bu8n4AobwFNlmjj1DA
http://www.google.com/url?q=http%3A%2F%2Fwww.raspberrypi.org%2Fwp-content%2Fuploads%2F2012%2F02%2FBCM2835-ARM-Peripherals.pdf&sa=D&sntz=1&usg=AFQjCNFqim_ccupAWtFMrAeOfPIvFbcOcA
http://www.google.com/url?q=http%3A%2F%2Fwww.blaess.fr%2Fchristophe%2Fcategory%2Fraspberry-pi%2F&sa=D&sntz=1&usg=AFQjCNFQz3PsThsyK1Okya3T0s3CfibAvg

LED ACT

Extract of leds-class.txt from the Linux kernel documentation

(http://www.kernel.org/doc/Documentation/leds/leds-class.ixt) :
LED handling under Linux

If you're reading this and thinking about keyboard leds, these are
handled by the input subsystem and the led class is *not* needed.

In its simplest form, the LED class just allows control of LEDs from

userspace. LEDs appear in /sys/class/leds/. The maximum brightness of the
LED is defined in max_brightness file. The brightness file will set the brightness
of the LED (taking a value 0-max_brightness). Most LEDs don't have hardware
brightness support so will just be turned on for non-zero brightness settings.

The class also introduces the optional concept of an LED trigger. A trigger

is a kernel based source of led events. Triggers can either be simple or
complex. A simple trigger isn't configurable and is designed to slot into
existing subsystems with minimal additional code. Examples are the ide-disk,
nand-disk and sharpsl-charge triggers. With led triggers disabled, the code
optimises away.

Complex triggers whilst available to all LEDs have LED specific
parameters and work on a per LED basis. The timer trigger is an example.
The timer trigger will periodically change the LED brightness between
LED_OFF and the current brightness setting. The "on" and "off" time can
be specified via /sys/class/leds/<device>/delay {on,off} in milliseconds.
You can change the brightness value of a LED independently of the timer
trigger. However, if you set the brightness value to LED _OFF it will

also disable the timer trigger.

You can change triggers in a similar manner to the way an 10 scheduler
is chosen (via /sys/class/leds/<device>/trigger). Trigger specific
parameters can appear in /sys/class/leds/<device> once a given trigger is
selected.

Design Philosophy

The underlying design philosophy is simplicity. LEDs are simple devices
and the aim is to keep a small amount of code giving as much functionality
as possible. Please keep this in mind when suggesting enhancements.

LED Device Naming

Is currently of the form:
"devicename:colour:function"

There have been calls for LED properties such as colour to be exported as
individual led class attributes. As a solution which doesn't incur as much
overhead, | suggest these become part of the device name. The naming scheme
above leaves scope for further attributes should they be needed. If sections

of the name don't apply, just leave that section blank.

http://www.google.com/url?q=http%3A%2F%2Fwww.kernel.org%2Fdoc%2FDocumentation%2Fleds%2Fleds-class.txt&sa=D&sntz=1&usg=AFQjCNE0szqLbCiEUZD06VLyVyxtTYR2EA

pi@raspberrypi ~ 5 ls /fsys/class/leds/ledd/

brightness device max_brightness power subsystem trigger uevent
pi@raspberrypi ~ 5 cat fsys/class/ledsfledd/trigger

none mmc@® [heartbeat]

pi@raspberrypi ~ 5 find /lib/modulesf3.1.9+/ -name '*ledtrig*’
/lib/modules/3.1.9+/kernel/drivers/leds/ledtrig-timer.ko

/lib/modules/3.1.9+/kernel/drivers/leds/ledtrig-heartbeat.ko
/lib/modules/3.1.9+/kernel/drivers/leds/ledtrig-default-on.ko
pi@raspberrypi 5 sudo modprobe ledtrig-timer

pi@raspberrypi 5 cat fsys/class/ledsfled®/trigger

none mmc® [heartbeat] timer

pi@raspberrypi ~ %

GPIO

Extract of gpio.txt from the Linux kernel documentation (http://www.kernel.org/doc/Documentation/gpio.txt) :
GPIO Interfaces

This provides an overview of GPIO access conventions on Linux.

[]

What is a GPIO?

A "General Purpose Input/Output” (GPIQO) is a flexible software-controlled
digital signal. They are provided from many kinds of chip, and are familiar

to Linux developers working with embedded and custom hardware. Each GPIO
represents a bit connected to a particular pin, or "ball" on Ball Grid Array

(BGA) packages. Board schematics show which external hardware connects to
which GPIOs. Drivers can be written generically, so that board setup code
passes such pin configuration data to drivers.

System-on-Chip (SOC) processors heavily rely on GPIOs. In some cases, every
non-dedicated pin can be configured as a GPIO; and most chips have at least
several dozen of them. Programmable logic devices (like FPGAs) can easily
provide GPIOs; multifunction chips like power managers, and audio codecs
often have a few such pins to help with pin scarcity on SOCs; and there are

also "GPIO Expander" chips that connect using the 12C or SPI serial busses.
Most PC southbridges have a few dozen GPIO-capable pins (with only the BIOS
firmware knowing how they're used).

[]

Sysfs Interface for Userspace (OPTIONAL)

Platforms which use the "gpiolib" implementors framework may choose to
configure a sysfs user interface to GPIOs. This is different from the
debugfs interface, since it provides control over GPIO direction and

value instead of just showing a gpio state summary. Plus, it could be
present on production systems without debugging support.

Given appropriate hardware documentation for the system, userspace could
know for example that GPIO #23 controls the write protect line used to
protect boot loader segments in flash memory. System upgrade procedures
may need to temporarily remove that protection, first importing a GPIO,

then changing its output state, then updating the code before re-enabling
the write protection. In normal use, GPIO #23 would never be touched,

and the kernel would have no need to know about it.

Again depending on appropriate hardware documentation, on some systems
userspace GPIO can be used to determine system configuration data that
standard kernels won't know about. And for some tasks, simple userspace
GPIO drivers could be all that the system really needs.

Note that standard kernel drivers exist for common "LEDs and Buttons”
GPIO tasks: "leds-gpio" and "gpio_keys", respectively. Use those
instead of talking directly to the GPIOs; they integrate with kernel
frameworks better than your userspace code could.

Paths in Sysfs

There are three kinds of entry in /sys/class/gpio:
- Control interfaces used to get userspace control over GPIOs;

http://www.google.com/url?q=http%3A%2F%2Fwww.kernel.org%2Fdoc%2FDocumentation%2Fgpio.txt&sa=D&sntz=1&usg=AFQjCNFeVlSqYVvT25IXwojIBtfcaDsOQA

- GPIOs themselves; and
- GPIO controllers ("gpio_chip" instances).

That's in addition to standard files including the "device" symlink.
The control interfaces are write-only:
/sys/class/gpio/

"export” ... Userspace may ask the kernel to export control of
a GPIO to userspace by writing its number to this file.

Example: "echo 19 > export" will create a "gpio19" node
for GPIO #19, if that's not requested by kernel code.

"unexport” ... Reverses the effect of exporting to userspace.

Example: "echo 19 > unexport” will remove a "gpio19"
node exported using the "export" file.

GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
and have the following read/write attributes:

/sys/class/gpio/gpioN/

"direction” ... reads as either "in" or "out". This value may
normally be written. Writing as "out" defaults to
initializing the value as low. To ensure glitch free
operation, values "low" and "high" may be written to
configure the GPIO as an output with that initial value.

Note that this attribute *will not exist* if the kernel
doesn't support changing the direction of a GPIO, or
it was exported by kernel code that didn't explicitly
allow userspace to reconfigure this GPIO's direction.

"value" ... reads as either 0 (low) or 1 (high). If the GPIO
is configured as an output, this value may be written;
any nonzero value is treated as high.

If the pin can be configured as interrupt-generating interrupt
and if it has been configured to generate interrupts (see the
description of "edge”), you can poll(2) on that file and
poll(2) will return whenever the interrupt was triggered. If
you use poll(2), set the events POLLPRI and POLLERR. If you
use select(2), set the file descriptor in exceptfds. After
poll(2) returns, either Iseek(2) to the beginning of the sysfs
file and read the new value or close the file and re-open it
to read the value.

"edge" ... reads as either "none", "rising", "falling", or
"both". Write these strings to select the signal edge(s)
that will make poll(2) on the "value" file return.

This file exists only if the pin can be configured as an
interrupt generating input pin.

"active_low" ... reads as either 0 (false) or 1 (true). Write
any nonzero value to invert the value attribute both
for reading and writing. Existing and subsequent
poll(2) support configuration via the edge attribute

for "rising" and "falling" edges will follow this
setting.

GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the
controller implementing GPIOs starting at #42) and have the following
read-only attributes:

/sys/class/gpio/gpiochipN/

"base" ... same as N, the first GPIO managed by this chip

"label” ... provided for diagnostics (not always unique)

"ngpio” ... how many GPIOs this manges (N to N + ngpio - 1)
Board documentation should in most cases cover what GPIOs are used for
what purposes. However, those numbers are not always stable; GPIOs on
a daughtercard might be different depending on the base board being used,
or other cards in the stack. In such cases, you may need to use the

gpiochip nodes (possibly in conjunction with schematics) to determine
the correct GPIO number to use for a given signal.

FYI, see the debugfs informations exported by the kernel when a GPIO (17) has been configured as an
output with sysfs:

pi@raspberrypi ~ 5 sudo mount debugfs /sys/kernel/debug/ -t debugfs

pi@raspberrypi ~ 5 1s fsys/kernel/debug/

bdi gpio hid kprobes memblock mmc@ sched features tracing usb wakeup_sources
pi@raspberrypi ~ $ cat [sys/kernel/debug/gpio

GPIOs 0-53, bcm2708_gplo:
gpio-16 (ledo@) out hi
gplo-17 (sysfs) out hi

GPIO position according to Raspberry Pi revision (Rev. 1 vs Rev. 2):

BCM
GPIO

R1:0/R2:2

R1:1/R2:3

4

17

R1:21/R2:27

22

10

11

MName

3.3v

SCLO

GPIO7

GPIO0

GPIO2

GPIO3

MOSI

MISO

SCLK

Header

1]2

3|4

516

718

910

1112

13|14

15116

17118

1920

21|22

23|24

25|26

Name

v

Ov

GPIO1

GPIO4

GPI0O5

GPI106

CEO

CE1

P1: The Main GPIO connector
[source https://projects.drogon.net/raspberry-pi/wiringpi/pins/]

BCM
GPIO

14

15

18

23

24

25

BCM
GPIO

28

30

P5: The auxilliary GPIO connector on Rev. 2 boards

Name

bv

GPIO8

GPIO10

Ov

Header

12

3|4

5|6

718

Name

3.3v

GPIOS

GPIO11

Ov

BCM
GPIO

29

31

[source https://projects.drogon.net/raspberry-pi/wiringpi/pins/]

https://www.google.com/url?q=https%3A%2F%2Fprojects.drogon.net%2Fraspberry-pi%2Fwiringpi%2Fpins%2F&sa=D&sntz=1&usg=AFQjCNFZR4OoeGlHQXRBicGtm8YKvP1kyg
https://www.google.com/url?q=https%3A%2F%2Fprojects.drogon.net%2Fraspberry-pi%2Fwiringpi%2Fpins%2F&sa=D&sntz=1&usg=AFQjCNFZR4OoeGlHQXRBicGtm8YKvP1kyg

P1: The Main GPIO connector Rev. 1

[source http://elinux.org/images/2/2a/GP10s.png]

http://www.google.com/url?q=http%3A%2F%2Felinux.org%2Fimages%2F2%2F2a%2FGPIOs.png&sa=D&sntz=1&usg=AFQjCNHyDgy0WcAroMqpSMFn7BoV3HJDlA

Alternate function direction

Function
Fin Direction 3 * Salect Regs
Regs
Fin Sat &
Claar Rags

Full up /I
Ceontrel Regs (gt State

3
GPICIN] \\I - A
g Pull up State Alternate function output
i
. : /
Pull Dn State /{ -
Lowe Lowe \ Altamate functian input
Pull T Detect
ull &n
Enable: Rags
Contrel Rags 9
High Lavel
Dietect
Enablz Rege
Lewal Detect ———— Interrupts

Event Detect
Status Regs A !

®— Edgo Detect —————

|
Flsing Edge
Dietect
Enahble Rags
|
Falling Edge:
Detact
Enable Regs
I
Async Rising
Edge Detact
Enabls Regs

I
Async Falling
Edge Detect
Enable Rags

Fin Leval
Regs

Figure 6-1 GPIO Block Diagram

Cross-Compilation

Download the cross-compilation toolchain:
git clone https://github.com/raspberrypi/tools.git ./tools

Makefile example for cross-compilation:
CFLAGS=-02 -pipe -mcpu=armll76jzf-s -mfpu=vfp -mfloat-abi=hard -w -g
CCPREFIX=../tools/arm-bcm2708/arm-bcm2708hardfp-1linux-gnueabi/bin/arm-bcm2
708hardfp-linux-gnueabi-
CC = $(CCPREFIX)gcc
TARGETS = S (patsubst %$.c,%,S(wildcard *.c))

all: $(TARGETS)

oo
oo
Q

S(CC) S(CFLAGS) $< -o $@

clean:
$(RM) S (TARGETS)

Remote debugging

pi@raspberrypi ~ ¢ gdbserver :2345 helloworld pause
Process helloworld pause created; pid = 9320
Listening on port 2345

julien@buzz:~/TODO/ISEN/RASPBERRY/SRCS LQ_PRELOAD=../1ihpython2.7.so.l.0
../tools/arm-bcm2708/arm-bcm2708hardfp-linux-gnueabi/bin/arm-bcm2708hardfp
-linux-gnueabi-gdb helloworld pause

GNU gdb (crosstool-NG 1.15.2) 7.3

Copyright (C) 2011 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying”
and '"show warranty" for details.

This GDB was configured as "--host=1i686-build pc-linux-gnu
-—target=arm-bcm2708hardfp-linux-gnueabi”.

For bug reporting instructions, please see:

Reading symbols from
/home/julien/TODO/ISEN/RASPBERRY/SRC/helloworld pause...done.

(gdb) 1list

1 #include

2 #include

3

4 int main(void)
5 {

6 puts ("Hello world !");
7

8 pause () ;
9

10 return 0;

(gdb) target remote 192.168.0.1:2345
Remote debugging using 192.168.0.1:2345
Reading symbols from
/home/julien/TODO/ISEN/RASPBERRY/tools/arm-bcm2708/arm-bcm2708hardfp-linux
-gnueabi/arm-bcm2708hardfp-1inux—-gnueabi/sysroot/1lib/ld-1inux.so.3...done.
Loaded symbols for
/home/julien/TODO/ISEN/RASPBERRY/tools/arm-bcm2708/arm-bcm2708hardfp-linux
-gnueabi/arm-bcm2708hardfp-1inux—-gnueabi/sysroot/1ib/ld-1inux.so.3
0x40000ef0 in process dl audit ()

from
/home/julien/TODO/ISEN/RASPBERRY/tools/arm-bcm2708/arm-bcm2708hardfp-linux
-gnueabi/arm-bcm2708hardfp-linux-gnueabi/sysroot/lib/ld-1linux.so.3
(gdb) break 6
Breakpoint 1 at 0x82f8: file helloworld pause.c, line 6.
(gdb) run
The "remote" target does not support "run'". Try "help target" or
"continue".
(gdb) continue
Continuing.

warning: Could not load shared library symbols for 2 libraries, e.g.
/usr/lib/arm-linux-gnueabihf/libcofi rpi.so.

Use the "info sharedlibrary" command to see the complete listing.

Do you need "set solib-search-path"” or "set sysroot'"?

Breakpoint 1, main () at helloworld pause.c:6
6 puts ("Hello wWorld !");

(gdb) backtrace

#0 main () at helloworld pause.c:6

